Curvas de Peano

Neste post todo, o intervalo \left[ 0,1\right] será denotado por I . Seja M um espaço métrico. Uma curva de Peano em M é uma aplicação contínua f:I\to M sobrejetiva.

Essas curvas de Peano tem relação (evidente) com o “cálculo” de grupos fundamentais. Em particular, a existência dessas curvas de Peano, por exemplo, está relacionada com a prova de que S^n é simplesmente conexo para n\geq 2 . Isso será explicado em outro post.

Aqui, vou construir de forma direta uma curva de Peano em I^n , n\in\mathbb{N} qualquer (por exemplo, I^2 é o quadrado fechado). Para isso, vou utilizar algumas considerações do post anterior.

Segue, abaixo, mais um lema sobre extensão contínua que será importante para a construção das curvas de Peano.

Lema 1: Seja C\subset I um subconjunto fechado. Se X\subset\mathbb{R}^n é um conjunto convexo, segue que qualquer aplicação contínua f:C\to X possui extensão contínua F:I\to X .

Demonstração: Com efeito, pela estrutura (topológica) da reta, tem-se um resultado conhecido de que todo aberto pode ser escrito como uma reunião enumerável de intervalos abertos disjuntos. Logo I-C é escrito como uma reunião enumerável \displaystyle\bigcup _{k\in L} A_k de intervalos abertos A_k = (a_k,b_k) . Logo define-se F(x) = f(x) , se x\in C . E, para x\in I-C , tem-se que x\in (a_k,b_k) para algum k\in L e, nesse caso, define-se \displaystyle F(x) = \left(\frac{x-b_k}{a_k-b_k}\right)f(a_k)+\left(\frac{a_k-x}{a_k-b_k}\right) f(b_k) . Verificar que F é, de fato, contínua é fácil. Além disso, pode-se notar que F está definida nesses intervalos abertos como sendo o segmento de reta que liga os valores de f nos extremos.

CQD

Antes de construir a curva de Peano, seguem algumas definições e um lema importante para a construção.  Seja \left\{ 0,1\right\} o espaço topológico (metrizável) munido da topologia discreta.

Segue que K=\left\{  0,1\right\} ^\mathbb{N} é um produto de espaços e, munido da topologia produto, é metrizável. Pelo teorema de Tychonoff, segue que K é compacto. E, pelas considerações do post anterior, tem-se que K é homeomorfo a K^n (para qualquer n\in\mathbb{N} ) .

Lema 2: Seja K=\left\{ 0,1\right\} ^\mathbb{N} o produto dos espaços topológicos discretos. Existe uma aplicação contínua sobrejetiva h : K\to I^n .

Demonstração: Define-se uma métrica em K=\left\{ 0,1\right\} ^\mathbb{N} . Dados x,y\in K , define-se \displaystyle d(x,y)=\sum _{i=1}^\infty  \frac{\left| x_i-y_i\right| }{2^i} . E, então, a aplicação \alpha : K\to I tal que \alpha (x) = d(x,0) , denotando-se 0 = (0,\ldots ,0) ,  é evidentemente contínua e sobrejetiva. Logo, dado n\in\mathbb{N} , \alpha\times\cdots\times\alpha = (\alpha )^n : K^n\to I^n é uma aplicação contínua sobrejetiva. Seja, então \beta : K\to K^n um homeomorfismo. Segue, então, que h= (\alpha )^n\circ\beta : K\to I^n é uma aplicação contínua sobrejetiva.

CQD

Teorema de Peano: Para qualquer n\in\mathbb{N} , existe uma aplicação contínua f: I\to I^n sobrejetiva.

Demonstração: Mune-se K=\left\{ 0,1\right\} ^\mathbb{N} da seguinte métrica coerente com a topologia produto d(x,y) = \displaystyle\sum _{i=1}^\infty \frac{\left| x_i - y_i\right|}{10^i} .

Define-se, então, a aplicação contínua \phi : K\to I tal que \phi (x) = d(x,0) . É fácil verficar que \phi é injetiva. Define-se M=f(K) . Tem-se, então, que M é compacto (e, em particular, fechado em I ). Além disso, tem-se que \varphi : K\to M , onde \varphi (x) = \phi (x) , é uma bijeção contínua definida num compacto que toma valores num espaço Hausdorff. Portanto  \varphi é um homeomorfismo e, então, K e M são homeomorfos.

Dado n\in\mathbb{N} , toma-se a aplicação contínua sobrejetiva h: K\to I^n , cuja existência é garantida pelo lema 2. Portanto h\circ (\varphi )^{-1}: M\to I^n é uma aplicação contínua sobrejetiva. Pelo lema 1, segue que existe uma extensão contínua f: I\to I^n (sobrejetiva) de h\circ (\varphi )^{-1} .

CQD

2 respostas para Curvas de Peano

  1. […] que vou expor aqui está intimamente ligado com o post sobre Conjunto de Cantor e com o post sobre Curvas de Peano (que serão feitos nos próximos dias). O post será breve: apenas para expor um resultado simples. […]

  2. Lucatelli disse:

    Depois de escrever esse post, eu descobri que, de fato, as pessoas falam em “espaço de Cantor”. Mas elas generalizam ainda mais dizendo que os espaços de Cantor é qualquer produto de espaços da forma F^\mathbb{N} , onde F é uma espaço finito discreto.
    Este post foi, então, uma exposição do caso particular em que F tem cardinalidade 2.

Deixe uma resposta

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

%d blogueiros gostam disto: